Search results for "gradient descent"

showing 10 items of 20 documents

On a global superconvergence of the gradient of linear triangular elements

1987

Abstract We study a simple superconvergent scheme which recovers the gradient when solving a second-order elliptic problem in the plane by the usual linear elements. The recovered gradient globally approximates the true gradient even by one order of accuracy higher in the L 2 -norm than the piecewise constant gradient of the Ritz—Galerkin solution. A superconvergent approximation to the boundary flux is presented as well.

Applied MathematicsMathematical analysisOrder of accuracySuperconvergenceglobal superconvergence for the gradientComputer Science::Numerical AnalysisGlobal superconvergence for the gradientMathematics::Numerical AnalysisNonlinear conjugate gradient methodElliptic curveComputational Mathematicserror estimatesNorm (mathematics)boundary fluxPiecewisepost-processing of the Ritz—Galerkin schemeGradient descentGradient methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

A new method for optimal synthesis of wavelet-based neural networks suitable for identification purposes

1999

Abstract This paper deals with a new method for optimal synthesis of Wavelet-Based Neural Networks (WBNN) suitable for identification purposes. The method uses a genetic algorithm (GA) combined with a steepest descent technique and least square techniques for both optimal selection of the structure of the WBNN and its training. The method is applied for designing a predictor for a chaotic temporal series

Artificial neural networkSeries (mathematics)Computer sciencebusiness.industryMathematicsofComputing_NUMERICALANALYSISChaoticPattern recognitionMachine learningcomputer.software_genreLeast squaresIdentification (information)WaveletGenetic algorithmArtificial intelligencebusinessGradient descentcomputerSelection (genetic algorithm)IFAC Proceedings Volumes
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Learning spatial filters for multispectral image segmentation.

2010

International audience; We present a novel filtering method for multispectral satel- lite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments car- ried out on multiclass one-against-all classification and tar- get detection show the capabilities of the learned spatial fil- ters.

Computer Science::Machine LearningMultispectral image0211 other engineering and technologies02 engineering and technology01 natural sciencesRegularization (mathematics)010104 statistics & probability[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]Life ScienceComputer visionSegmentation0101 mathematicsLarge margin method021101 geological & geomatics engineeringMathematicsImage segmentationContextual image classificationPixelbusiness.industryPattern recognitionImage segmentationSupport vector machineComputingMethodologies_PATTERNRECOGNITIONmultispectral imageSpatial FilteringArtificial intelligenceGradient descentbusiness
researchProduct

Unitary Space–Time Constellation Design Based on the Chernoff Bound of the Pairwise Error Probability

2008

Unitary space-time constellation design is considered for noncoherent multiple-antenna communications, where neither the transmitter nor the receiver knows the fading coefficients of the channel. By employing the Clarke's subdifferential theorem of the sum of the kappa largest singular values of a unitary matrix, we present a numerical optimization procedure for finding unitary space-time signal constellations of any dimension. The Chernoff bound of the pairwise error probability is used directly as a design criterion. The constellations are found by performing gradient descent search on a family ldquosurrogaterdquo functions that converge to the maximum pairwise error probability. The comp…

Constellation diagramUnitary matrixLibrary and Information SciencesComputer Science ApplicationsCombinatoricsChannel capacityChernoff boundGradient descentAlgorithmRandom variableDecoding methodsPairwise error probabilityComputer Science::Information TheoryInformation SystemsMathematicsIEEE Transactions on Information Theory
researchProduct

What is the best fitting function? Evaluation of lactate curves with common methods from the literature

2015

Using the lactate threshold for training prescription is the gold-standard, although there are several open questions. One open question is: What is the best fitting method for the load-lactate data points? This investigation re-analyses over 3500 lactate diagnostic datasets in swimming. Our evaluation software examines six different fitting methods with two different minimization criteria (RMSE and SE). Optimization of parameters of the functions is put in excecution with gradient descent. From a mathematical point of view, the double phase model, which consists of two linear regression lines, shows the least errors (RMSE min 0.254 ± 0.172; SE min 0.311 ± 0.210). However, this method canno…

Data pointBest fittingMean squared errorLactate thresholdStatisticsLinear regressionEconometricsFunction (mathematics)Gradient descentMathematicsExponential function
researchProduct

Weight Adaptation Stability of Linear and Higher-Order Neural Units for Prediction Applications

2018

This paper is focused on weight adaptation stability analysis of static and dynamic neural units for prediction applications. The aim of this paper is to provide verifiable conditions in which the weight system is stable during sample-by-sample adaptation. The paper presents a novel approach toward stability of linear and higher-order neural units. A study of utilization of linear and higher-order neural units with the foundations on stability of the gradient descent algorithm for static and dynamic models is addressed.

Dynamic modelsComputer scienceOrder (business)Control theoryStability (learning theory)Verifiable secret sharingAdaptation (computer science)Gradient descent
researchProduct

A Region-based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking

2018

We propose an algorithm for real-time 6DOF pose tracking of rigid 3D objects using a monocular RGB camera. The key idea is to derive a region-based cost function using temporally consistent local color histograms. While such region-based cost functions are commonly optimized using first-order gradient descent techniques, we systematically derive a Gauss-Newton optimization scheme which gives rise to drastically faster convergence and highly accurate and robust tracking performance. We furthermore propose a novel complex dataset dedicated for the task of monocular object pose tracking and make it publicly available to the community. To our knowledge, it is the first to address the common and…

FOS: Computer and information sciencesComputer scienceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyArtificial IntelligenceHistogram0202 electrical engineering electronic engineering information engineeringComputer visionPoseMonocularbusiness.industryApplied MathematicsImage segmentationObject detectionComputational Theory and MathematicsVideo trackingComputer Science::Computer Vision and Pattern RecognitionRGB color model020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessGradient descentSoftware
researchProduct

Online shortest paths with confidence intervals for routing in a time varying random network

2018

International audience; The increase in the world's population and rising standards of living is leading to an ever-increasing number of vehicles on the roads, and with it ever-increasing difficulties in traffic management. This traffic management in transport networks can be clearly optimized by using information and communication technologies referred as Intelligent Transport Systems (ITS). This management problem is usually reformulated as finding the shortest path in a time varying random graph. In this article, an online shortest path computation using stochastic gradient descent is proposed. This routing algorithm for ITS traffic management is based on the online Frank-Wolfe approach.…

FOS: Computer and information sciencesMathematical optimizationComputer sciencePopulation02 engineering and technology[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE][INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing[SPI]Engineering Sciences [physics][INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]0502 economics and business11. SustainabilityComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringFOS: MathematicsData Structures and Algorithms (cs.DS)educationIntelligent transportation systemMathematics - Optimization and ControlRandom graph050210 logistics & transportationeducation.field_of_studyStochastic process[SPI.PLASMA]Engineering Sciences [physics]/Plasmas05 social sciencesApproximation algorithm[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationStochastic gradient descentOptimization and Control (math.OC)[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Shortest path problem020201 artificial intelligence & image processing[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]Routing (electronic design automation)[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]
researchProduct

Learning the relevant image features with multiple kernels

2009

This paper proposes to learn the relevant features of remote sensing images for automatic spatio-spectral classification with the automatic optimization of multiple kernels. The method consists of building dedicated kernels for different sets of bands, contextual or textural features. The optimal linear combination of kernels is optimized through gradient descent on the support vector machine (SVM) objective function. Since a na¨ive implementation is computationally demanding, we propose an efficient model selection procedure based on kernel alignment. The result is a weight — learned from the data — for each kernel where both relevant and meaningless image features emerge after training. E…

Image classificationComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingMachine learningcomputer.software_genreKernel (linear algebra)Robustness (computer science)Multiple kernel learning (MKL)Contextual image classificationbusiness.industryModel selectionPattern recognitionSupport vector machineComputingMethodologies_PATTERNRECOGNITIONKernel (image processing)Feature (computer vision)SimpleMKLKernel alignmentSupport vector machine (SVM)Artificial intelligencebusinessGradient descentcomputer2009 IEEE International Geoscience and Remote Sensing Symposium
researchProduct